Литература
Великие математики
Таблицы
Игры
Разное
Гостевая книга
Карта сайта
Формулы сокращенного умножения
Целые числа
Модуль
Делимость. Сравнения
Рациональные уравнения
Рациональные неравенства
Степени. Корни
Тригонометрические уравнения, неравенства
Показательные уравнения, неравенства
Логарифмические уравнения, неравенства
Арифметические, геометрические прогрессии
Комбинаторика. Бином Ньютона
Последовательности и пределы
Олимпиадные задачи
Планиметрия
Стереометрия


Неравенство Коши.


a1 + a2 + ... + an

n

n a1a2...an , где aiR, ai ≥ 0, i = 1,2,...,n.

Доказательство


Для начала отметим, что если хотя бы одно из чисел ai = 0, правая часть будет равняться нулю, а левая - неотрицательной. Потому далее будем рассматривать лишь ai > 0.

Выведем вспомогательное неравенство. Обозначим за Gm = m a1a2...am. Отметим, что

am+1 = Gm+1m+1/Gmm = Gm(Gm+1/Gm)m+1 = Gm(1 + (Gm+1/Gm - 1))m+1.

Согласно неравенства Бернулли

Gm(1 + (Gm+1/Gm - 1))m+1Gm(1 + (m+1)(Gm+1/Gm - 1)) = Gm + (m+1)Gm+1 - (m+1)Gm = (m+1)Gm+1 - mGm.

Или am+1 ≥ (m+1)Gm+1 - mGm (*)

Теперь воспользуемся методом математической индукции.

1. База индукции.

При n = 1 неравенство Коши имеет вид a1 = a1. База проверена.

2. Переход.

Пусть при неком n = k неравенство Коши выполняется, то есть

a1 + a2 + ... + ak

k

k a1a2...ak = Gk.

Докажем, что выражение верно и при n = k+1.

Исходя из перехода:

a1 + a2 + ... + akkGk.

Добавляем к данному неравенству (*) при значении m = k и получим:

a1 + a2 + ... + ak + ak+1kGk + (k+1)Gk+1 - kGk = (k+1)Gk+1.

Исходя из этого

a1 + a2 + ... + ak+1

k+1

Gk+1 = k+1 a1a2...ak+1.

Переход доказан, а значит и наше предположение верно. Что и требовалось доказать.


Отметим, что равенство достигается лишь в том случае, когда a1 = a2 = ... = an.


Назад

Поиск по сайту
Перевод на другие языки
Число 10100 называется гугол. Этот термин был предложен 9-летним племянником Эдварда Каснера (США) (ум. в 1955 г.). 10 в степени гугол называется гуглоплексом. Некоторые представления об этой величине можно получить, вспомнив, что количество электронов в наблюдаемой Вселенной, согласно некоторым теориям, не превышает 1087.
На данный момент в базе присутствует информация о 1847 великих математиках.

Для ознакомления доступны 48 книг.
Если вы хотите оказать помощь проекту - прочтите, пожалуйста, это.
Наш проект в социальных сетях:
- Живой журнал
- Facebook
- Twitter
Чтобы сайт всегда был под рукой:
- Добавить в избранное
Также вы можете добавить новости проекта в свою "Ленту новостей":
- RSS
Свяжитесь с нами используя раздел Контакты
Последняя новость :

Добавлен материал "Показательные уравнения и неравенства", в котором заполнены разделы "Теория" и "Методы решений". В ближайшее время ожидайте задачи по этому материалу.
18.03.2013

Rambler's Top100



2009-2013 © "Математика - это просто!" - некоммерческий, обучающий сайт. Все права принадлежат их владельцам.
При использовании материала ссылка на первоисточник обязательна.
Особая благодарность Артему Субачу за консультации при создании данного проекта.