Литература
Великие математики
Таблицы
Игры
Разное
Гостевая книга
Карта сайта
Формулы сокращенного умножения
Целые числа
Модуль
Делимость. Сравнения
Рациональные уравнения
Рациональные неравенства
Степени. Корни
Тригонометрические уравнения, неравенства
Показательные уравнения, неравенства
Логарифмические уравнения, неравенства
Арифметические, геометрические прогрессии
Комбинаторика. Бином Ньютона
Последовательности и пределы
Олимпиадные задачи
Планиметрия
Стереометрия

Теория Задачи с решением Задачи без решений Методы решения
1...2 3 

Сумма первых трех членов возрастающей арифметической прогрессии равна 21. Если от первых двух членов этой прогрессии отнять по 1, а к третьему члену прибавить 2, то полученные три члена составят геометрическую прогрессию. Найти сумму восьми первых членов геометрической прогрессии.

____________________________________________________________________________

Обозначим через ai - члены арифметической прогрессии c разностью d, через bi - геометрической, с знаменателем q.

Согласно формуле суммы арифметической прогрессии имеем S3 = (2a1 + 2d) · 3 / 2 = 21 или a1 + d = 7.

По условию a1 - 1, a1 + d - 1, a1 + 2d + 2 - три последовательных члена геометрической прогрессии. Используем свойство геометрической прогрессии:

(a1 + d - 1)2 = (a1 + 2d + 2)(a1 - 1).

После замены переменной a1 = 7 - d и открытия скобок получаем квадратное уравнение

d2 + 3d - 18 = 0, т.е. d1 = 3, d2 = -6.

Условию удовлетворяет лишь d1 = 3 (т.к. арифметическая прогрессия возрастающая). В этом случае a1 = 4. Находим b1 = a1 - 1 = 3. b2 = a1 + d - 1 = 6, откуда q = 2.

Наконец, согласно формуле суммы членов геометрической прогрессии получаем:

S8 = [b1(q8 - 1)] / (q - 1) = 765.

Ответ: S8 = 765.


 

Сумма трех чисел, которые составляют арифметическую прогрессию, равна 2, а сумма квадратов этих же чисел равна 14/9. Найти эти числа.

____________________________________________________________________________

Используя тот факт, что числа составляют арифметическую прогрессию, запишем их как a, a + d, a + 2d.

Согласно условию их сумма равна 2, т.е. 3a + 3d = 2, a = 2/3 - d.

Согласно второму условию a2 + (a + d)2 + (a + 2d)2 = 14/9.

После раскрытия скобок получаем 27a2 + 45d2 + 54ad = 14.

Делаем замену переменной a = 2/3 - d, раскрываем скобки и получаем:

d2 = 1/9.

d = ±1/3.

Теперь легко найти числа, составляющие арифметическую прогрессию. При любом из значений d = ±1/3 числа будут равны 1/3, 2/3, 1.

Ответ: 1/3, 2/3, 1.


 

Найти четыре числа, составляющие геометрическую прогрессию, в которой третий член больше первого на 9, а второй больше четвертого на 18.

____________________________________________________________________________

Используя тот факт, что числа составляют геометрическую прогрессию, запишем их как b, bq, bq2, bq3.

По условию:

1) bq2 = b + 9.

2) bq = bq3 + 18.

Домножаем первое уравнение на q и складываем со вторым:

9q + 18 = 0.

Откуда q = -2. Из первого уравнения находим b. b = 3.

Теперь легко найдем все числа: 3, -6, 12, -24.

Ответ: 3, -6, 12, -24.


 

Найти сумму всех трехзначных чисел, которые делятся на 7.

___________________________________________________

Сначала найдем минимальное и максимальное трехзначные числа, которые делятся на 7. Это числа 105 и 994 соотвественно. Запишем a1 = 105, am = 994.

Найдем m, т.е. количество трехзначных чисел, которые делятся на 7. Используем свойство прогрессии и получаем:

994 = 105 + 7(m - 1).

Откуда m = 128.

А теперь воспользуемся формулой суммы m членов арифметической прогрессии S128 = (105 + 994) · 128 / 2 = 70336.

Ответ: 70336.



1...2 3 
Поиск по сайту
Перевод на другие языки
Математика – царица наук, арифметика – царица математики.
Карл Фридрих Гаусс
На данный момент в базе присутствует информация о 1847 великих математиках.

Для ознакомления доступны 48 книг.
Если вы хотите оказать помощь проекту - прочтите, пожалуйста, это.
Наш проект в социальных сетях:
- Живой журнал
- В Контакте
- Facebook
- Twitter
Чтобы сайт всегда был под рукой:
- Добавить в избранное
Также вы можете добавить новости проекта в свою "Ленту новостей":
- RSS
Свяжитесь с нами используя раздел Контакты
Последняя новость :

Добавлен материал "Показательные уравнения и неравенства", в котором заполнены разделы "Теория" и "Методы решений". В ближайшее время ожидайте задачи по этому материалу.
18.03.2013

Rambler's Top100



2009-2013 © "Математика - это просто!" - некоммерческий, обучающий сайт. Все права принадлежат их владельцам.
При использовании материала ссылка на первоисточник обязательна.
Особая благодарность Артему Субачу за консультации при создании данного проекта.

Автосигнализация харьков. Авто сигнализация харьков www.12volt.ua.