Литература
Великие математики
Таблицы
Игры
Разное
Гостевая книга
Карта сайта
Формулы сокращенного умножения
Целые числа
Модуль
Делимость. Сравнения
Рациональные уравнения
Рациональные неравенства
Степени. Корни
Тригонометрические уравнения, неравенства
Показательные уравнения, неравенства
Логарифмические уравнения, неравенства
Арифметические, геометрические прогрессии
Комбинаторика. Бином Ньютона
Последовательности и пределы
Олимпиадные задачи
Планиметрия
Стереометрия

Теория Задачи с решением Задачи без решений Методы решения

Неравенство вида P1(x)/Q1(x) + P2(x)/Q2(x) + ... + Pm(x)/Qm(x) >(<) 0,
где P1(x), ... , Pm(x), Q1(x), ... , Qm(x) - целые рациональные функции, называется рациональным неравенством.

Квадратным трехчленом называется выражение вида ax2 + bx + c, где a, b, cR, причем a ≠ 0.

Если дискриминант квадратного трехчлена отрицательный, то его знак зависит от знака старшего коэффициента: если a > 0, то ax2 + bx + c > 0, при всех x; если a < 0, то ax2 + bx + c < 0, при всех x.



Поиск по сайту
Перевод на другие языки
Математика – царица наук, арифметика – царица математики.
Карл Фридрих Гаусс
На данный момент в базе присутствует информация о 1847 великих математиках.

Для ознакомления доступны 48 книг.
Если вы хотите оказать помощь проекту - прочтите, пожалуйста, это.
Наш проект в социальных сетях:
- Живой журнал
- В Контакте
- Facebook
- Twitter
Чтобы сайт всегда был под рукой:
- Добавить в избранное
Также вы можете добавить новости проекта в свою "Ленту новостей":
- RSS
Свяжитесь с нами используя раздел Контакты
Последняя новость :

Добавлен материал "Показательные уравнения и неравенства", в котором заполнены разделы "Теория" и "Методы решений". В ближайшее время ожидайте задачи по этому материалу.
18.03.2013

Rambler's Top100



2009-2013 © "Математика - это просто!" - некоммерческий, обучающий сайт. Все права принадлежат их владельцам.
При использовании материала ссылка на первоисточник обязательна.
Особая благодарность Артему Субачу за консультации при создании данного проекта.